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o 1. Introduction

",

X 1.1. The purpose of this research

v

! In what follows we will consider the following

Problem:

o

) Given a sample, determine the random field that generated it.

L At first glance, this problem seems to be without solution, because of the lack of
2 sufficient data. In order to make the problem reasonable, it is necessary to
i assume that the field is not arbitrary but belongs to some specific class, e.g.,

o

1oy

. 1) is composed of independent random variables
\ 2) s first order Markov (e.g., in two dimensions, it is a2 Kanal mesh [1] [2])

>

. 3) is n-th order Markov

< 4) is weakly (second order) stationary

o

N 5) is strongly stationary

»

. and so on.

,:: Making one of these assumptions means that in reality we are not consider-
-

¥ ing the problem of finding the field that generated the given sample, but some
: other field that belongs to the given class and approximates the field that gen-
k)

:‘ erated the given sample. In this paper we will not be interested in the problem
Y
' of evaluating how good this approximation is, because this aspect is treated in
. the author’s papers [8] [9].
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In this series of papers we will study the problem in the case where the field

is assumed to be strongly stationary, with some additional restrictions.

1.2. Direction of the research

The first part of our research, presented in this paper, is concerned with the
simplest case, where we have a stationary field made up of independent random

variables; obviously, we may suppose that the field is one-dimensional.

The next stage of the research will consider the case of one-dimensional sim-
ple homogeneous Markov chains, followed by one-dimensional Markov homogene-
ous chains of higher order. Subsequent stages will study two- (or higher-) dimen-

sional Markov random fields (Kanal meshes), simple or of higher orders.

1.3. Digitization

In order to be able to deal with digitized data and at the same time to
reduce the complexity of the problem, we will consider only random fields with a
finite set of possible outcomes at each point. In order to extend these results to
the continuous case, we would have to consider some process of approximation,

such as that used by the author [3]-[7].

2. The direct theorem

2.1. Generalities
Let us consider a sequence of independent trials with possible outcomes
A, (1 < 1 <n) and corresponding probabilities p, > 0 (1 <+ < n) adding up to

1. Each possible result of a series of s consecutive trials can be written as a

{.-(~I_.(._r () f\( .‘\.-\,-",» o _- RS
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sequence '
CJ = (Akl' Ak?, ey, ‘4k,) (2.1) -
where each k, (1 < r < s) can take any value i (1 < 1 < n). Because of sta- E
tionarity, the probability of occurrence of the sequence C, does not depend on the ,
moment when the trials begin; taking into consideration the independence of the A
trials, this probability can be written as -
, .
P(C) =TI P(4s) ‘ (22)
r=1 :
Let us denote by m; (1 < ¢ < n) the number of times the outcome A, appears in
the sequence C,, so that 0
.
2 mi=s (2.3) ',Z
=1
The equality (2.2) can be written
]
n m |:
pP(c)=1I »" (2.4) -
=1
\ A
\ .\
In what follows we denote by N
N
n 1 h)
H= 3 p,log — (2.5) .
1=1 ' “
K
the entropy of the random field characterized by the probabilities p, (1< 1 < n), 3
and -
n 1 K
p= 3, log — (2.6) :
=1 ] .
\
o
<
3 ~
h)
~
L J
3,

"
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Obviously

0<p <o (2.7)

2.2. The theorem

Let us denote by I', the class of all sequences C,. For given § > 0, s > 0 we

denote by I'/, the set of all sequences C, € I', such that

Im, - sp;] < sb (

o
[* 2]
g

for all i (1 < 1 < n), and by I'{, its complement with respect to I',.

Definition. Sequences C, € I'{, will be called (4,s}-standard sequences or simple

standard sequences.

Let us consider the equation

Vvar
and let us denote by u (¢) its solution.
Definition. Givene > 0,6 > 0, s > n, condition A holds if

48 es>n (2.10)

and condition B holds if
416 s> u*(e) (2.11)

Let us denote by .V ( ) the cardinality of a set.
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Theorem 1.

Let us suppose that at least one of the conditions A, B holds. Then

(a) If C, is a (6,s)-standard sequence, it follows that

1 1

- —_ 5
. log P(Cy l{l< [/
(b) P(T5,) 2 1-¢

() lim =log N(T},) =H

s —=00 §
§ -0
Remark 1.
The relation (2.12) is equivalent to
2-s(H+8) <« p(C,) < 274 (H-¢0)
i.e. to
P (Cs) — 2—aH+ 86p8 . Iol <1

Remark 2.

The relation (2.13) is equivalent to

P(Fé'",) < ¢
Remark 3.

From (2.14) it follows that

im b oy 2
LM N LN

Indeed, from (2.14) we obtain the relation
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log N(Fgl,)=s’lH+ o(1) (2.19)
i.e.,
N(rf,) = 2¢[#+ 1) (2.20)

Taking into consideration that

N (I.“) = n® = 9¢logn (2.21)
and because
H<logn, ) (2.22)
if follows that
!
N(T3,) = g-sllogn-H+dl) = o(1) (2.23)

N (T,)
which is equivalent to the first equality in (2.18), and

N(th’f, _ IV(Fa)—jV (Fé',a) =1- N (Ftil.a)
N(T) N(Ty) B N(T,)

=1+ o{1) (2.24)

which is equivalent to the second equality in (2.18).

Remark 4.

Our Theorem 1 is closely related to some results which go back to Shannon

(10] and received a mathematically acceptable form from Khinchine [2].

Our Theorem 1(a), (b) refers to independent random variables. while that in
[2] refers to ergodic simple Markov chains, but our result is not a particular case

of that in [2]. Indeed, the results in [2] are existence theorems, considering that &

¢ can be taken as small and s as large as desired. while our results give effective
relations between 8, ¢, s in order that the results hold.
8
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Our Theorem 1(c) refers to the set I'j, of all standard sequences C,, while

the result in ([2], Th. 3) refers to another set of sequences C,; our result contains

2] a limit for § — 0, s — oo, while the result in ([2], Th. 3) contains a limit for
A0 § — 00.
_“

N 2.3. Proof
[~
b (a) Let us consider a sequence C, € T'{,. From (2.8) it follows that

‘ m;=sp;+ 880, |6] <1 (1<i<n) : (2.25)
\:t From (2.4) there follows the relation

N

Y n
; ‘; log P (C,) = Z m; log p; (2.26)
& =1
3

" and taking into consideration (2.25), there follows the equality
1 - n

" log P (C,) = Zl (sp; + 86,) log p;

] =

_':; . . (2.27)
) =3 ), p;logp;+s6- Y, 6 logp,

i=1 i=1

- _
:: which can also be written as
g

" n)!

X log = sH + s6 Zn: 0, log ! (2.28)
’. — N . —_— - o

P (Ca) =1 ' '

-

> From (2.28) we obtain the result (a):

>

~ l-log 1 - <5-Z":|¢9,-|logL_<_6‘ilogL=6p (2.29)
o s P(C.s) =1 D =1 P

3
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(b) Instead of proving inequality (2.13) we will prove (2.17). In order that a
sequence C, € I', belong to I'/,, it is necessary that for at least some value

of 1 (1 < 1 < n) the inequality (2.8) does not hold, i.e.,

Fél,’a = U {lmi— sp| > 36} (2.30)
=1
so that
Py =P{ ) {im- ol > sol} < 3 Plim-sni > s8] 21)
=1 =1

(bl) Let us assume that condition A holds. It is known from the elements of the

Theory of probability that

p: (1-p,
P{lm,‘— sp| > sé} < -—'(——') (2.32)
56
But for 0 < z < 1, we have the inequalities
051(1-1)5% (2.33)

where the maximum value is reached for z = %, so that from (2.32) it fol-

lows that

1
4562

(1<i<n) (2.34)

P{lmi- spil > sb S

Consequently, from (2.31) there follows the inequality

n

P(T{,) <
(és)__ 4552

and because of (2.10). it follows that (2.17) holds.
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(b2) Let us assume that condition B holds. From the Central limit theorem in

the Moivre-Laplace form, it is known that

P{ o <5} P{ L < s/ T
n g <o) = pf|-me ) < /o)
s ' sp; (1-p;) Pl )
(2.36)
L
9 f5V p(1-p) _1:..
~ e dz 1<i<n
Ver Yo I<isn)
so that
[
° 6\/ p(l-p) 2 (2.37)
P{lmi—sp.'|>6s}~1—\/‘i'z_”j; e?dr, 1<i<n)
In order to obtain the relation (2.17) it is sufficient to take
-
9 f5 PEEFI. Ay - (2.38)
1- “ — (1 <
7 J, e < - (1 <1< n)
i.e.,
6 L
pll-p) _Z 2.39
1 f e2d1:>—l-[l—i(l<1<n) ( )
;27r 0 n - =
which is equivalent to the inequality
6/ p,(1-p,) > uf(e) (1 <1< n (2.40)
Because of (2.33), we have the inequality
s
) p, (1-p) 2 2675 (1 << n) {2.41)
9
f_/'\.'._/._. ........................ :,'_'\‘ ----- .-\' """" - .";.'-,.._._.I'_ RIS ERTUE AR ~o
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so that in order to satisfy (2.40) it is sufficient to take in consideration Con-

dition B (2.11), i.e

26Vs > u(e) (

(8]
N
[ ]

(c) If C;€T{,, then (2.15) holds, so that
N2+t < S P(C)=P(T},) <1 (2.43) y
where the summation is for all C; € I'{,. From (2.43) there follows the rela-
tion

-i- log N(T{,) < H + 6p (2.44) ]

In a similar way, from (2.13), (2.15) there follow the relations
1-e < P(T§,)= 3% P(C) < N(T§,) 2 H-% (2.45)

where the summation is also for all C, € I'j,. From (2.45) we obtain the

relation

H- 5p<—-1og\(r )+—log 16 (2.46)
From (2.44), (2.46) it follows that
H- 6/)—— log — <—log1\(F N < H+ 6 (2.47) ‘

- s
For ¢ given, arbitrary, 0 as small as we want. and s as large as we want,

because of (2.7) it follows that (2.14) holds. 2

10
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3. The inverse theorem

o
o
v
W

o

3.1. Generalities

Let 6> 0,¢>0,s>1, and let C? be an arbitrary specific sequence,

L g &0 o Ay A

belonging to I',. Let us assume that one of the conditions A or B holds.

In what follows we assume that C9 is generated by a sequence of indepen-
dent trials, with possible outcomes A; (1 < + < n) with unknown probabilities
p; (1 < i < n), and we will try to determine some intervals in which these proba-

bilities can take values. Let us denote

and by W{S} the confidence of statement S.

3.2. The theorem

Because we have proved that
P{T{)>1-¢ P(T},) < ¢ (3.2)

it follows that with confidence larger than 1 - ¢, C9 € T'{,, i.e.,

W{ |m? - sp| < bs, (1 Sz’Sn)} >1-¢ (3.3)
i.e.,
m? m?
W{—'—5<p,-<-?'-+6, (1§i§n)}>1—e (3.4)
s

Let L, be the Banach space of all vectors

11
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g=1(q1, .-, 4q) (3.5)

with ¢, real numbers of any sign, with norm
llql] = SUP{ lgi1 <4< n} (3.6)

Let I1, be the totality of probability measures

p=1(pi ... P (3.7)
with p; > 0(1 < 1 < n), and
n
Y =1 (3.8)
=1

This is a metric space with distance
llp—p'l|=sup{lp.'—pi~l; 1<:i< n} (3.9)
where p, P €I1, p-p € L,. If p, o’ €11, are two different solutions, satisfying
the inequalities in (3.4), it follows that
lpi~ Pl <26 (1 <:i<n) (3.10)
so that from (3.9) it follows that
llp - Pll < 26 (3.11)

We have thus proved

Theorem 2.

Let us assume that

e s 0 S o
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(1) e, &, s satisfy one of the conditions A, B;

(2) the arbitrary sequence CO € T, is generated by an independent identically
distributed sequence of trials, with unknown probabilities p; (1 < ¢ < n).

Then
(a) The relation (3.4) holds.

(b) If p, p/ are two different solutions, their distance in [1, is less than 24.

Remark 4.

Let L be the Banach space of all vectors (3.5) with norm the total variation

gl = 32 1ad (3.12)

=1

Then IT, is a metric space with distance

- 2l = 32 Ip; - ot (3.13)
f==1

where p, p € I1,.

If p, ¥ € 1, are two different solutions, satisfying (3.4), it follows from (3.13)

that

lllp - #Ill < 2n8 (3.14)

It is easy to see that

llp - #ll < lllp - Plll < nllp - Pl (3.15)

We remark also that if L) is the Euclidean space of all vectors (3.5) with

norm

13
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.ll
=D
‘l
.
~: . b
(D=|% (3.16)
i=1
: then IT, is a Euclidean space with distance
' _l-
n o 2 -
’ (- o) =| L Ini-sil (3.17)
. =1
: It is easy to see that
2 llp - Il < ((p-¥)) < Vallp - Pl : (3.18)
: 4. Examples
) 4.1. Examples under Condition A
: Example 1.

Let C? be a sequence with n =2, s = 10%, ¢ = 273 = 0.125, § > 0.02. so
that condition A holds. Let m? =3 x 10%, md =7 x 103

From (3.4) it follows that

VV{ 0.28 < p; < 0.32; 0.68 < po < 0.72 } > 0.875 (4.1)
and from (3.11) we obtain
llp - Pl < 0.04 (4.2)
Example 2.
Let C9 be a sequence with n =2, s = 10%, ¢ = 23 = 0.125, § > 0.002. so

-. that condition A holds. Let m9 =3 X 10°, mJ = 7 X 10°.

14
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From (3.4) it follows that
w{ 0.208 < p; < 0.302; 0.698 < p, < 0.702} > 0.875 (4.3)

and from (3.11) we obtain

lip - PI| < 0.004 (4.4)
4.2. Examples under Condition B
Example 3.

Let C‘,’ be a sequence with n =2, ¢ = 273 = 0.125, s = 104, § > 0.009,

m) =3 X 103, m = 7 X 103, so that

o)~

[1 - é] = 0.46875 (4.5)

and relation (2.39) takes the form

t?
\/;_ﬂ _I;"(f) e 2 dr > 0.46875 (4.6)
which holds for
u(e) > 1.8 (4.7)

Considering Condition B in form (1.42) it is easy to see that it holds. From

(3.4) it follows that
w{ 0.291 < p; < 0.309 ; 0.691 < p, < 0.709{ > 0.875 (4.8)

and from (3.11) it follows that

15
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llp - 7|l <0.018 (4.9)

Example 4.
Let C9 be a sequence with n =2, ¢ = 23 = 0.125, s = 108, § > 0.0009,
md = 3 X 10% m3 = 7 X 10% in this case, relations (4.5)-(4.8) hold, so that

Condition B holds. From (3.4) it follows that

W{ 0.2991 < p, < 0.3009 ; 0.6991 < p, < 0.7009 ; > 0.875 (4.10)

and from (3.11) it follows that
llp - #|| < 0.0018 (4.11)
4.3. Examples involving images that satisfy Condition A or B
Example 5.

Let us consider a digital television picture, i.e.. an array of 500° points,

where each point can have 256 levels of gray.

1
256

Here n = 256, s = 500° = 250,000; let ¢ = = 0.00390625.

Taking these values, if we want Condition A satisfied it is sufficient that

1
46° 50, — > 256 1.12
X 250,000 X 555 > (1.12)
or
10% 82 > 2567, (14.13)
i.e.,
5 > 0.256 . (4.14)

16




Consequently

0
m‘
w{ — -p| <0256; (1<i< '256)} > 0.9960937 (4.13)
L)
with
llp- 7l = maX{Ip. -pil, 1< < ‘256} < 0512 (4.16)
Example 6.

With the same basic data as in Example 5, we take n = 256, s = 5002,

€ = -2%6- = 0.00390625, and we consider that Condition B holds, i.e.,

26Vs > u (¢) (4.17)

Here

5[ -i)—ll ==l
) nl T2 2 65.536

4.18
1 ] L (1-0.16667) = L x 0.83334 (4.18)
2 60000 2 2
= 0.41667 '
so that from tables it follows that
u (¢) ~ 1.30 (4.19)
Thus
26 X 500 > 1.30 (4.20)
i.e.,
§ > 0.0013 (+.21)
So

17
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0
)
—_p'-

"

<00013; (1 <:< 256)} > 0.9960937 (4.22)

and
llp - Pil < 0.0026 (1.23)
Example 7.
Let us take n = 256, s = 5007, ¢ = L 0.0625, and let us assume that

Condition A holds. Then

46° X 250,000 X lls > 256 (4.24)
i.e.,
108 & > 212 (4.25) :
or .
5 > 0.064 (4.26)
so that
m? ‘ .
Wiy l—-p| <0064: 1 <i<256( > 0.9375 (4.27) !
S h
llp - 7|| < 0.128 (4.28) X
N
Ex@mp!e §
3
Let n = 258, s = 250,000, ¢ — TIG— = 0.0625 and let us assume that Condi- ."
tion B holds. Then |
i
N
.‘
18 :.
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atan LYY

W s A At

L[l_i =1f{-L _L =.‘_l1__1_' NLI -
2 n 2 16 256 2 4096 2 4000
(4.29)
= % (1 - 0.00025) = % X 0.99975 = 0.49987
so that
u(€) ~ 3.8 (4.30)
i.e.,
26 X 500 > 3.8 (1.31)
or
§ > 0.0038 (4.32)
Thus
mo
W{ -;— -pl <0.0038; 1 <i<256( > 0.9375 (4.33)
llp - 7|l < 0.0076 (4.34)

Let us assume that we have a 30-minute sequence of TV pictures. If we have

32 pictures in each second, we have a total of
32 X 60 X 30 = 2% x 60° (4.35)

pictures, succeeding each other in time. Assuming independence between

the pictures, we have n =256, s=500° X 2% x 60%, and let

1

€= 58 = 0.00390625. Assuming that Condition A holds. the value of &
is given by

46 (250,000) X 2% X 607 X —— > 256 4.36)
J 256
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or
10% 82 x 2% x 60% > 256° (4.37)
i.e.,
10° 6 X 2° X 60 > 256 (4.38)
Then
25
6> -—,"—6—— > 0.001 (4.39)
102 X 240
Consequently
m°
W{ — - pi < 0.001; (1 <1<256)¢ > 0.9960937 (4.40)
s
and
e - Pl < 0.002 (4.41)
Example 10.
Let us consider the same problem as in Example 9, with the supposition that
Condition B holds.
In this case
26 (500 X 2% X 60) > 1.30 (1.42)
1.,
5> 13 0.0000054 (4.43)
2,400.000 ' o
so that
| .0
w: ‘— . p,! < 00000054 : (1 <0< ‘256)} > 0.9960937 (4.44)
n; ‘
and
1p - Pl < 0.000010% (4.45)
20
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